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Abstract

An intelligent mobile robot must be able to autonomously navigate in complex environments, so that it could
be deployed in the real world. Traditional methods solve this problem by building a map of an environment,
locating the position of the robot, and performing path planning to navigate the robot on the map. However, these
methods often make a variety of assumptions and require intensive computational resources, which may restrict the
application of these methods. More importantly, these methods lack of mechanisms to learn from failures. In this
paper, I present a learning-based mapless mobile robot navigation method with continuous state and action spaces, in
which a proved efficient policy gradient method, i.e. Proximal Policy Optimization (PPO), is introduced for learning
continuous control tasks. It takes the normalized laser scanning data as input and directly outputs the continuous
velocity commands to direct a mobile robot operating in the environments. The proposed method is trained end-
to-end in several simulation environments to evaluate the performance without any manually designed features,
human-provided labels, or prior assumptions. Experimental results show that it can learn to navigate through
multiple different environments with a few hours of fully autonomous training. Also, it successfully learned to
provide continuous control commands for mobile robots. Moreover, evaluations in multiple complex environments
demonstrate the robustness and adaptability of the proposed method. The proposed learning-based method and
mobile robot learning system can be a general approach to train mobile robots for more complex continuous tasks.
Videos of the experiments can be found at https://youtu.be/PObwzXI4EEA.

Index Terms

Mobile Robots, Deep Reinforcement Learning, Continuous Control, Proximal Policy Optimization, Robot
Navigation, Mobile Robot Learning

I. INTRODUCTION

The ability to autonomously navigate through complex and unstructured environments plays an im-
portant role in mobile robot navigation, which ensures mobile robots can safely and efficiently work
in a variety of challenging practical applications, such as delivery, search and rescue, inspection, and
transportation. The main goal of mobile robot navigation is to determine its own position and then plan a
path towards the goal locations. In order to navigate through environments, mobile robots are required to
build and interpret the map of environments. As a result, mobile robot navigation can be defined as the
combination of map building and interpretation, self-localization, and path planning to navigate mobile
robots through environments without obstacle collision [1].
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Fig. 1. Bird’s-eye view of the virtual training environments simulated by the Gazebo simulator. The left, the middle, and the right shows
the square-shaped environment, the round-shaped environment, the L-shaped environment, respectively.

Autonomous robot navigation has been extensively investigated, ranging from small size indoor mobile
robots [2], to large size autonomous driving vehicles in urban environments [4], [5]]. Many of these
traditional works need to build a map of the environments when localizing and planning movement control
actions. Although geometric reconstruction and mapping methods have made a great progress in a range
of navigation and object avoidance [6]], it is still constrained by the size, weight, and power of mobile
robots [7]. Considerable computational resources are needed for explicit modeling of the environment. A
variety of assumptions are included, such as static or texture environments, which may not be suitable
for practical scenarios. However, these limitations may lead to difficulties with textureless environments,
dynamic tasks, and high-bandwidth sensors [§]].

Learning-based methods attempt to address mobile robot navigation problems by learning from data,
which provides considerable promise. Supervised learning methods can learn drivable routes [9], obstacle
detectors , end-to-end driving from demonstrations , , etc. Whereas, since the capabilities and
performance of supervised learning deep neural networks are usually largely limited by the available data,
the amount of human-labeled data inherently constraints these methods.

With the popularity of high-performance computing, autonomously learning from trial-and-error, namely
reinforcement learning, achieves great success in a variety of tasks, especially playing video games like
Atari [13]]. Deep reinforcement learning can scale to complex 3D manipulation tasks, and learn policies
efficiently enough to train on physical robots. Without any prior demonstrations or manually designed
representations, a variety of 3D manipulation skills are learned in simulation, even a complex door opening
skill on real robots [[14]. As the robotic manipulation workspace is fully observed, static, and stable, the
applications of deep reinforcement learning are largely limited in robotic manipulation. In the field of
mobile robots, the sample space is extremely enlarged by the complex, partially observed environments.
Target-driven visual navigation in indoor scenes using deep reinforcement learning simplifies this problem
by sampling continuous control actions to discrete actions like forward, left, right [15], which largely limits
mobile robot behaviors. Recently, a generalized computation graph is proposed to form a navigation model,
which can learn from 64 x 36 grayscale raw images taken from an onboard forward-facing camera. The
car navigates through environments at a fixed speed of 2m/s. The navigation model can offer continuous
control actions, namely the steering angle, to direct an RC car in the simulation environment and a
real-world environment [16]. This generalized computation graph tries to subsume value-based model-
free methods and model-based methods together. Its goal is still to learn collision avoidance policies for
mobile robots, which rewards the robot for collision-free navigation.

In recent years, several different methods have been proposed for deep reinforcement learning. Deep
Q-learning for the first time combines deep neural networks with reinforcement learning at scale.
Deep Q-learning works well on game environments, which is able to master Atari games to superhuman
level with only the raw pixels and score as inputs. But, it is poorly understood, and fails on many
simple continuous control problems [18]], [19]. An asynchronous gradient descent method is proposed to
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optimize the deep neural network for continuous motor control problems, which has poor data efficiency
and robustness [20]. Trust region policy optimization is not good at dealing with the noise like dropout
and parameter sharing, and is also relatively complicated to implement and tune [21]]. A new family of
policy gradient methods, Proximal Policy Optimization (PPO), are proposed, which have some advantages
of trust region policy optimization, but are much easier to implement and show empirically better sample
complexity [22], [23]. Simulated robotic locomotion and Atari game playing show that PPO outperforms
other online policy gradient methods, and achieves a favorable balance between sample complexity,
simplicity, and wall-time [22]]. Moreover, it is only evaluated in simulation control agents, and further
demonstration and improvement for practical applications on mobile robots are absent, and but required.

In this work, I present a learning-based mapless mobile robot navigation method. A proved efficient

policy gradient method, PPO, is utilized for learning continuous control actions. The laser scanning
data is first normalized, and then is fed into the proposed method as input. After a few hours of fully
autonomous learning, the continuous velocity commands are output to direct a mobile robot running in
the simulated environments. The proposed method is implemented as a mobile robot learning system in
Python, which organically combines the Robot Operating System (ROS) Framework, OpenAl gym [18],
[24]], and the Gazebo simulator together. The Gazebo simulator provides a detailed and realistic simulation
environment for mobile robots. OpenAl gym offers a toolkit for developing and comparing reinforcement
learning algorithms. ROS is a flexible framework for a wide variety of robotic applications. This builds a
proper platform for evaluations and demonstrations of the proposed learning-based mobile robot navigation
method. The proposed method is trained end-to-end in several different simulation environments to
evaluate the performance without any manually designed features, human-provided labels, and prior
assumptions. The experiment results show that it can quickly learn policies for collision-free navigation.
The output action commands continuously control mobile robots in the environment. Also, the robustness
and adaptability of the proposed method are demonstrated in multiple different environments.

In summary, this paper makes the following main contributions:

» A learning-based mapless mobile robot navigation method is presented for learning continuous control
tasks with a proved efficient policy gradient method (PPO).

o The presented method is trained end-to-end from scratch in several different simulation environ-
ments, in which the performance is evaluated and the robustness and adaptability are demonstrated
empirically.

» The proposed learning-based method and mobile robot learning system can be as a general approach
to train the mobile robot for more complex continuous tasks in the future.

The remainder of this paper is organized as follows: Section [II| presents the proposed algorithm in
detail. Evaluations in simulation experiments are described in the Section [[TIl Section [[V] summarizes and
concludes the presented work.

II. PROPOSED APPROACH

Here, I present an approach to learning continuous control for a mobile robot. The main goal is to learn
collision avoidance and stay in the lane policies for mapless mobile robot navigation.

A. Overview

This task is formalized as a reinforcement learning problem, where the mobile robot is rewarded for
collision-free navigation, shown in Fig. [2| The state is described by the sparse laser scanning data and
the current velocity of the mobile robot. The sparse laser scanning data is directly sampled from the
raw laser scanning data with scanning angle 270 degrees. The range data is normalized to (—1.0,1.0).
The mobile robot operates in the environments at a fixed linear speed as in [[16]. The current velocity of
the mobile robot can be solely described by the current angular velocity. The control actions are learned
by trial-and-error during reinforcement learning process, which only include a series of angular velocity
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commands. However, at every time step, the angular velocity command is represented by a conditional
Gaussian distribution X ~ N(u, 0?) with the mean p and standard deviation o. A hyperbolic tangent
function tanh is employed as the activation function to limit the angular velocity range of the mean u
also in (—1.0,1.0). The standard deviation o is constrained by a nonlinear function softplus in (0, 400).
The real output control action is sampled from Gaussian distribution, which achieves a favorable balance
between exploitation and exploration. A clip function is applied to the sampled angular velocity, which
ensures the sampled angular velocity range in [—1.0, 1.0].

Laser | Velocity N(u,0?)

__________________________________________________________

Reward Action

Environment

Fig. 2. Overview of learning-based mobile robot navigation method. The state is described by the sparse laser scanning data and the current
angular velocity of the mobile robot. The output of deep reinforcement learning network is a conditional Gaussian distribution A (s, o)
to represent the velocity command. At each step, the state, the action, and the reward are collected to fully autonomously train the deep
reinforcement learning network.

B. Learning with Proximal Policy Optimization

To learn the current Gaussian distribution of angular velocity for the mobile robot, proximal policy
optimization [22], [23] is applied in the work. The PPO algorithm can be considered as an approximate
version of trust region policy optimization with first order gradients, which makes it easier for recurrent
neural networks (RNNs) in a large-scale setting. Algorithm Box |1| presents the continuous control learning
algorithm through PPO in pseudo-code. Actor-critic architecture is used in the proposed algorithm.

Firstly, According to policy 7y, the mobile robot operates one step in the environment. At each step, the
state, the action, and the reward are collected for further training. Then, the advantage function is given
by temporal difference (TD) error, which is the difference between discounted rewards ), _, " “r, and
state value Vj(s;). Actor updates 6 by a gradient method with respect to Jppo(€), which maximizes a
surrogate function with the probability ratio % Actor optimizes new policy 7y (a;|s;) based on the
advantage function and old policy 7,4(a|s;). The larger the advantage function is, the more likely the
new policy changes. However, if the advantage function is too large, the algorithm is very likely to be
divergent. Therefore, a KL penalty is introduced to limit the learning rate from old policy m,4(a|s;) to
new policy 7p(ay|s;). Critic updates ¢ by a gradient method with respect to Lpgy(¢), which minimizes
the loss function of TD error given a data with length-T timesteps. The desired change is set by the
hyperparameter KL;,4; in each policy iteration. If the actual change KL[myq|ms] belows or exceeds the
KLt4rger Tange in 5o, KLiarget, ShighKLiarget], the scaling term o > 1 would adjust the coefficient of
KL[’/Told”/Tg].

Except the KL penalty coefficient to update actor network, another approach which can be used as an
alternative is the clipped surrogate objective [22]. The main objective can be described as

LEHP(9) = Ey[min(ry(0) Ay, clip(ry(0),1 — e, 1 + €) A;)), (D
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Algorithm 1: Learning Continuous Control through Proximal Policy Optimization
1 fori=1,..N do
Run policy 7y for T timesteps, collecting s;, a;, ry
Estimate advantages A; = DotV T, = Vi(se)
Told < Tg
for j = 1,...M do
‘ Jppo(0) = ZtT:1 %At — AKL[7y4|m] Update 6 by a gradient method w.r.t. Jppo(6)
end
for j = 1,...B do
‘ Lpr(¢) = — Zthl(ZtIN ¥ try, — Vy(s:)) Update ¢ by a gradient method w.r.t. L. (¢)
end
if KL[Wold|7Tl9] > BhighKLtarget then
‘ A a
else if KL[ﬂ'Oldlﬂ'Q] < ﬁlowKLtarget then
| AN
end

e N A W ON

e O o
W N = O

o
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end

=
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where € = 0.2 is hyperparameter. The clip term clip(r:(0),1 —e€, 1+ e)flt has the same motivation as the
KL penalty, which is also used to limit too large policy updates.

C. Reward Function

To simplify the reward function, the critic network uses only two different conditions without normal-
ization or clipping, which can be defined as
r if not collision
7+(St, ar) = e . .. (2)
Teollision  1f collision

If the mobile robot freely operates in the environment, a positive reward 7,0, 1S provided. Otherwise,
if the mobile robot collides with the obstacle through a minimum laser scanning range checking, a large
negative reward 7.oisi0n 18 given. This reward function motivates the mobile robot to navigate through
the environment without collision, and stay in the lane.

III. SIMULATION BASED EVALUATION

In order to systematically evaluate the performance of the proposed learning-based mobile robot mapless
navigation method, simulation experiments are performed. The proposed method can freely navigate the
mobile robot through multiple simulation environments only using the sparse laser scanning data. The
mobile robot can quickly learn to navigate complex environments after a few hours autonomously training.
Videos of the experiments can be found at https://youtu.be/PObwzXI4EEA.

A. Simulation Setup

Since the proposed learning-based mobile robot mapless navigation method operates in a closed loop
with states observing by the robot’s perception, rewards from the environment, policy learning with Deep
RL, and actions applied to motion control (see Fig. 2, a detailed and realistic simulation is required.

The Gazebo simulator 7.0.0 is adopted in the training process for more realistic virtual environment
simulation. A kobuki-based turtlebot is used as the mobile robot platform. The mobile robot receives the
laser scanning data from a ULM-30LX Hokuyo Laser Range Finder, which has a field of view (FOV)
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with 270 degrees and angular resolution of 1.0 degree. The scanning distance ranges from 0.1m to 10m.
A toolkit for reinforcement learning using ROS and the Gazebo simulator extends the OpenAl gym for
mobile robot learning. Although the deep reinforcement learning process and Gazebo simulation require
considerable computational resources, there is no special GPU unit used in this simulation. To build
practical and low computational cost algorithm, an ordinary GPU, namely GeForce GT 610, is employed
in our evaluation. The proposed method is tested in the virtual simulation environment on an ordinary
PC with 3.4 GHz six-core Intel 17 processor and 64 GB memory. The mobile robot learning system is
implemented in the Python language and is run in the Robot Operating System (ROS) Kinetic on Ubuntu
16.04 LTS (Xenial).

The mobile robot training related parameters are presented as follows. Considering the physical dynamic
of the turtlebot, the fixed linear velocity is set to the maximum linear velocity of 0.65m /s, and the angular
velocity ranges in [—1.0, 1.0]rad/s. Although the angular velocity is sampled from a Gaussian distribution,
it is also clipped to [—1.0, 1.0]rad/s. The distance threshold of the laser range, which determines whether
crashing to the wall, is set to 0.2m. The maximum iteration steps for each episode is set to 3000. The
actor and critic neural network are both implemented by 3 fully-connected neural network layers with 512
nodes. And also, the same learning rate o = 0.00002 are used both for actor and critic neural network.
Collecting the state, the reward, and the action for every 16 times, the batch is executed to update learning
policy by a gradient method. For each end of the episode, the learning policy is also updated.

Three different simulation scenarios are used to evaluate the proposed method. Since the main goal
is to learn collision avoidance and stay in the lane policies for mapless mobile robot navigation, the
closed loop environments are chosen for the mobile robot training. The simulation scenarios include the
square-shaped environment, the round-shaped environment, and the L-shaped environment, as shown in

Fig.

e AL R

Fig. 3. Example failure cases during training process in different virtual environment simulated by Gazebo.

B. Simulation Results

I present results evaluating the proposed learning-based mobile robot navigation method on multiple
different simulated mobile robot scenarios. The mobile robot performs motion planning according to the
laser scanning data input. After iterative trial-and-error learning, proper actions are sent to control the
mobile robot for collision-free navigation. However, sometimes the policy fails shown in Fig. [3| The
successful policy drives the mobile robot follow the path through the L-shaped environment without
collision shown in Fig. [6] More detailed experimental information can be seen from the video.

1) The Square-Shaped Environment: The square-shaped environment is presented on the left of Fig
The task is to run in a square lane without collision. Fig. 4 shows the results obtained through 300 episodes.
Fig. shows the cumulated rewards over episodes. According to the blue line, after 200 episodes, the
mobile robot already can make a maximum of 3000 iterations. Since during training process the action
is sampled from a Gaussian distribution to achieve a reinforcement learning balance between exploitation
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Fig. 4. The cumulated reward graph over episodes (A) and iteration steps (B) obtained from the monitoring of the square-shaped environment.
The blue line shows the cumulated rewards while the red line shows the averaged rewards.

and exploration, sometimes the exploration would make the mobile robot cumulate fewer rewards shown
in Fig. 4 The same situations would also be shown in other simulated environments.

However, after a period of learning, the latter episode runs more iteration steps. To clearly show
the reward cumulating process, Fig. shows the cumulated reward graph over iteration steps. After
10k iteration steps, the mobile robot can reach the maximum of 3000 iterations without collision. After
30k iteration steps, the average cumulated rewards exceed 2000. From Fig. @B, only few iteration steps
corresponds to very low cumulated rewards, and most of them are more than 4000. Cumulated rewards
around 4000 or higher usually mean that the robot did not crash more than 20 laps for the square-shaped
environment.

2) The Round-Shaped Environment: The middle of Fig. [l| is a bird’s-eye view of the round-shaped
environment. Fig. |5 shows that after only 90 episodes, the mobile robot already can run the maximum of
3000 iterations without collision. After 20k iteration steps, the average cumulated reward is nearly 3000.

3) The L-Shaped Environment: The L-Shaped Environment is a typical indoor environment, like a
corridor in a building, shown in the right of Fig. [I] Fig. [6] shows the screenshots when the mobile robot
runs following the path through the L-shaped environment in a loop. Fig. |7| shows the results obtained
from the monitoring of the L-shaped environment. After 200 episodes, the cumulated reward is nearly
closed to 1000. Although after 20k iteration steps, one of the episodes has reached the maximum of 3000
iterations, the rewards are slightly unstable. The possible reason is that the L-shaped environment is much
bigger and more complex than the square-shaped environment and the round-shaped environment, the
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Fig. 6. The mobile robot runs following the path through the L-shaped environment in a loop.
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Fig. 7. The cumulated reward graph over episodes (A) and iteration steps (B) obtained from the monitoring of the L-shaped environment.
The blue line and the red line represent the cumulated rewards and the averaged rewards, respectively.

Gaussian distribution over actions would be easier to make the mobile robot collide with the wall. The
successful evaluation process can be seen from videos of the experiments.

IV. SUMMARY & CONCLUSION

In this work, a learning-based mapless mobile robot navigation method is presented that is capable
of learning continuous control through proximal policy optimization from continuous state spaces. By
taking the normalized laser scanning data as input, after trial-and-error learning, it can directly generate
the continuous velocity commands to control a mobile robot for collision-free navigation. The ROS
framework, OpenAl gym, and the Gazebo simulator are organically combined to provide a platform for
the implementation of the proposed method. In three different environments, including the square-shaped
environment, the round-shaped environment, and the L-shaped environment, the proposed method is trained
end-to-end to evaluate the performance without any manually designed features, human-provided labels,
and prior assumptions. The simulation experiments show that after a few hours of fully autonomous
training, the continuous velocity commands are successfully learned for mobile robots. The proposed
method can be further extended for more complex continuous tasks.

Although the proposed method is tested to learn to avoid collisions in multiple different environments,
the control actions are simplified at a fixed linear speed to move the mobile robot through the simulated
environment. The future work would extend the proposed method to learn angular velocity and linear
velocity at the same time, and deploy it to the real mobile robot in the complex physical environment. Also,
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further research would investigate how to learn in large outdoor environments with dynamic obstacles.
The mobile robot learning method may further provide an efficient and robust way for practical mobile
robot applications.
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